23 research outputs found

    Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Get PDF
    AbstractA fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties

    An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant

    Get PDF
    Wearable energy harvester offers clean and continuous power for wearable sensors or devices, and plays an important role in a wide range of applications such as the health monitoring and motion track. In this study, we investigate a small electromagnetic resonance wearable kinetic energy harvester. It consists of a permanent magnet (PM) supported by two elastic strings within a rectangular box form a 3-degree-of-freedom (3-DoF) vibrator. Copper windings are attached to the outer surface of the box to generate electrical energy when the PM is forced to vibrate. To minimize any frictional losses, ferrofluid is used such that the poles of PM are cushioned by the ferrofluid, to the effect that the PM will not touch the inner of the box. Simulation results show that the ferrofluid can keep the PM ‘contactless’ from the box even subject to 10 times gravity acceleration. A prototype is built and tested under different loading conditions. Resistance load experimental results indicate the proposed harvester can generate 1.11.1 mW in walking condition and 2.282.28 mW in running condition. An energy storage circuit is employed and the energy storage experimental results show that the average storage power during walking and running conditions are 0.0140.014 mW and 0.1490.149 mW respectively. It is shown that the developed harvester can be readily attached on a shoe to offer continuous power supply for wearable sensors and devices

    A Hydraulic Reciprocating Rod Seal’s Life Evaluation Method Incorporating Failure Mechanism Analysis and Test Observation Data

    No full text
    Reciprocating rod seals are widely used in hydraulic systems. Their useful life and reliability affect that of the system. Degradation modeling is necessary to evaluate the useful life of the seal. Seal wear is one of the important forms of hydraulic reciprocating rod seal degradation, yet it is difficult to measure through direct methods. Because seal wear determines the leakage of the seal, we therefore consider the seal leakage as the performance degradation index. Furthermore, the degradation of the seal is always associated with random effects, which cannot be considered by theoretical failure mechanism analysis. Hence, stochastic processes are applied to consider the random effects. Considering the error between the measured value and its real degradation state caused by the measurement environment or other factors, we introduce the measurement error term into the Wiener process model and develop the corresponding Wiener process life prediction model. Finally, the failure mechanism analysis and test measurement data are fused to predict the life cycle of the hydraulic reciprocating rod seals. The effectiveness of the proposed method is verified by comparing the predicted degradation and the experimental observations

    Matching design of hydraulic load simulator with aerocraft actuator

    Get PDF
    AbstractThis paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of “Standard Actuator” and “Standard HLS”. Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences

    Multi-Objective Optimization Design of an Electrohydrostatic Actuator Based on a Particle Swarm Optimization Algorithm and an Analytic Hierarchy Process

    No full text
    During the last few years, the concept of more-electric aircraft has been pushed ahead by industry and academics. For a more-electric actuation system, the electrohydrostatic actuator (EHA) has shown its potential for better reliability, low maintenance cost and reducing aircraft weight. Designing an EHA for aviation applications is a hard task, which should balance several inconsistent objectives simultaneously, such as weight, stiffness and power consumption. This work presents a method to obtain the optimal EHA, which combines multi-objective optimization with a synthetic decision method, that is, a multi-objective optimization design method, that can combine designers’ preferences and experiences. The evaluation model of an EHA in terms of weight, stiffness and power consumption is studied in the first section. Then, a multi-objective particle swarm optimization (MOPSO) algorithm is introduced to obtain the Pareto front, and an analytic hierarchy process (AHP) is applied to help find the optimal design in the Pareto front. A demo of an EHA design illustrates the feasibility of the proposed method

    Antiskid Braking Control with On/Off Valves for Aircraft Applications

    No full text
    corecore